Acridone Synthesis Essay


Chapter 1 Organic synthesis
1.1 Preparation of m-Dinitrobenzene
1.2 Preparation of m-Nitroaniline
1.3 Preparation of Hippuric Acid
1.4 Preparation of Azlactone
1.5 Preparation of phthalimide
1.6 Preparation of 2, 4-Dihydroxyacetophenone
1.7 Preparation of Anthracene-Maleic anhydride adduct
1.8 Microwave Assisted Synthesis of Anthracene Maleic Anhydride Adduct
1.9 Microwave Assisted Synthesis of Aspirin
1.9.1 P-Bromoacetanilide
1.9.2 Synthesis of P-Bromoaniline
1.9.3 Preparation of 2, 4, 6 Tribromoaniline
1.9.4 Preparation of 1, 3, 5 Tribromobenzene
1.9.5 Preparation of Aspirin
1.9.6 Preparation of Tetrahydrocarbazole
1.9.7 7-Hydroxy4-Methyl Coumarin (Umbelliferon)
1.9.8 Organic Synthesis-1: 2–Phenyl Indole
1.9.9 Organic Synthesis-2: 7-Hydroxy-3-Methyl Flavone
1.10 Organic Synthesis-3: 2, 5 Di hydroxy Acetophenone
1.10.1 Organic Synthesis-4: 4-Chloro Toluene
1.10.2 Organic Synthesis-5: Benzpinacol [Photo reduction]
1.10.3 Organic Synthesis-6: 7-Hydroxy Coumarin
1.10.4 Organic Synthesis-7: Photodimerization of Maleic Anhydride
1.10.5 Organic Synthesis-8: Benzophenone
1.10.6 Organic Synthesis-9: Benzanilide
1.10.7 Organic Synthesis-10: Vanillyl Alcohol
1.10.8 Organic Synthesis-11 Ortho and Para Nitro Phenols
1.10.9 Organic Synthesis-12: Acridone

Chapter 2 Isolation of Natural product
2.0 Isolation of Piperine from Black-pepper
2.1 Isolation of Caffeine from Tea Leaves
2.2 Isolation of Cineole from Eucalyptus Leaves

Chapter 3 Drug synthesis
3.0 synthesis of Paracetamol
3.1 synthesis of Phenytoin
3.2 synthesis of Benzocaine
3.4 synthesis of Synthesis of chlorbutol
3.5 synthesis of Sulphanilamide
3.6 synthesis of flourescein

Chapter 4 Organic mixture analysis
4.0 Analysis of Organic Binary and Ternary Mixture Analysis
4.1 Separation reagent
4.2 Solubility procedure
4.3 Separation procedure
4.4 Solid-liquid or liquid-liquid mixture
4.5 Binary mixture
4.6 Ternary mixture
4.7 Qualitative Analysis of Organic Compounds
4.8 Functional Group Analysis: Analysis of Carboxylic Acids
4.9 Derivative: Amide & Anilide
4.10 Analysis of Phenols
4.10.1 Derivatives
4.10.2 Analysis of Amines
4.10.3 Derivatives
4.10.4 Analysis of Carbonyl compounds
4.10.5 Iodoform test for methyl ketone
4.10.6 Derivatives for carbonyl compound
4.10.7 Analysis of Amides
4.10.8 Derivatives
4.10.9 Anilides
4.10.10 Derivative
4.11 Analysis of Esters
4.11.1 Derivatives
4.11.2 Analysis of Ethers
4.11.3 Derivatives
4.11.4 Analysis of Hydrocarbon
4.11.5 Derivatives
4.11.6 Analysis of Miscellaneous Group
4.11.7 Carbohydrates
4.11.8 Derivatives: Carbohydrates
4.11.9 Analysis of Urea
4.11.10 Derivatives: Urea
4.12 Analysis of Thiourea
4.12.1 Derivatives: Thiourea

Chapter 5 Spectral Analysis and chromatographic techniques
5.0 Spectral Analysis
5.1 order of interpretation of the spectral data
5.2 Analysis of Spectral Data
5.3 Introduction of chromatography
5.3.1 Classification of Chromatographic Techniques
5.3.2 Thin Layer Chromatography–I
5.3.3 Thin Layer Chromatography–II
5.3.4 Thin Layer Chromatography-3
5.3.5 Coloum Chromatography -1 Principle Materials Needed Procedure: Dry Packing Method Wet Packing Method
5.3.6 Column Chromatography-II Principle Materials Needed Procedure: Dry Packing Method Wet Packing Method


Chapter 1 Organic synthesis

1.1 Preparation of m-Dinitrobenzene

Aim: To synthesize a pure sample of m-dinitrobenzene by nitration of nitrobenzene.

Principle: Nitration of aromatic compounds containing electron releasing groups (OH, NH2 etc) is carried out under milder conditions because the aromatic nucleus is activated.

In case the aromatic compound containing an electron withdrawing group (NO2, SO3H, CHO, CO2H) the nitration requires drastic conditions (i.e.,) use of fuming HNO3 and concentrated H2SO4 as nitrating agents.

Type of reaction: Electrophilic Substitution Reaction on Aromatic ring (Nitration).

Apparatus: Round bottom flask (RBF), Air condenser, beaker, suction pump.

Chemicals required: 5ml nitrobenzene, 7ml fuming nitric acid, 10ml concentrated H2SO4.

Procedure: 1. Prepare nitrating mixture by placing 7ml of fuming nitric acid in a clean dry Round bottom flask (RBF). To this carefully add, with shaking 10ml of concentrated H2SO4 and a fragment of porcelain. 2. To the nitrating mixture add 5ml nitrobenzene in very small lots with constant shaking. After Adding whole of nitrating mixture shake the Round bottom flask (RBF) for 5 minutes. 3. Fix the air condenser and heat the flask on boiling water bath for 1 hour. Shake the flask vigorously from time to time throughout this period of heating. 4. After heating allow the Round bottom flask (RBF) to cool to room temperature. Finally pour this mixture carefully with vigorous stirring into a beaker containing crushed ice. The heavy oily dinitrobenzene will rapidly solidify.

Re-crystallization: Rectified spirit or alcohol.

Yield: 5.6g.

Melting Point: 89-900C.

Reference: 1.Practical Organic Chemistry by Mann and Saunders. 2. Comprehensive organic chemistry by V.K Ahluwalia and Renu Aggarwal.

1.2 Preparation of m-Nitroaniline

Aim: To synthesize a pure sample of m-nitroaniline by selective reduction of m-dinitrobenzene.

Principle: m-nitroaniline unlike o and p-nitroaniline cannot be prepared by direct nitration of Aniline. It has therefore to be prepared by reducing only one of the nitro groups in m-Dinitrobenzene. This selective reduction can be achieved by boiling an aqueous suspension of m-Dinitrobenzene with sodium disulphide. Sodium disulphide is prepared in situ by the addition of Sulphur to sodium sulphide solution. In these circumstances the dinitrobenzene is readily reduced to m-nitroaniline, the sodium disulphide being oxidized to sodium thiosulphate.

Types of reaction: partial reduction or selective reduction.

Apparatus: 500ml beaker sand bath burette, glass funnel.

Chemicals required: 2.5g m-dinitrobenzene, 1g-sulphur, 4 g-sodium sulphide, 200ml-water.

Procedure: 1. Preparation of sodium disulphide: Add 1 g of finely powdered sulphur to a solution of 4 g of crystalline sodium sulphide in 60ml water. Boil the mixture gently for a few a minutes until a clear solution of sodium disulphide is obtained. 2. Heat 2.5g of pure m-dinitrobenzene in 150ml of water in a 500ml beaker on sand bath until the water boils gently. 3. Transfer the sodium disulphide solution into a burette and clamp the burette in position such that the end of the burette is immediately above the beaker. 4. Allow the sodium disulfide solution to fall drop by drop into boiling water at such a rate that the total addition takes 10-15minutes throughout this period keep the molten dinitrobenzene continuously dispersed as fine drops and not allowed to settle to the bottom. 5. When the addition of sodium disulphide is complete, boil the solution gently for a 20 minutes and quickly filer the solution using a hot water funnel. 6. A small quantity of elementary sulphur remains in the filter paper. The pale brown filtrate rapidly deposits yellow crystals of m-nitroaniline.

Re-crystallization: Hot water.

Melting point: 1140C


1. The crystalline sodium sulphide (Na2S.9H2O) is very deliquescent, and only a sample which has been kept in a well Stoppard bottle and therefore reasonably dry should be used. 2. Avoid using animal charcoal during re-crystallization as it is liable to absorb and appreciable quantity of the m-nitroaniline.

Chemical reaction and its Mechanism:

illustration not visible in this excerpt

Reference: 1. Practical organic chemistry by man and saunters. 2. Jerry March.

1.3 Preparation of Hippuric Acid:

Aim: To synthesize a pure sample of hippuric Acid from glycine and benzoyl chloride.

Principle: Hippuric Acid can be synthesized by N-benzoylation of glycine. The benzoylation of hydroxyl and amino compounds in the presence of excess of cold aqueous base is called Schotte Baumann reaction. In Schotte-Baumann reaction N- Benzoylation or O- Benzoylation is carried out in the presence of cold aqueous NaOH. The excess of sodium hydroxide reacts with excess of un-reacted benzoyl chloride to give NaCl and sodium benzoate, which remains in solution.

Type of reaction: N-benzoylation.

Apparatus: Iodination flask, beaker, litmus paper, watch glass.

Chemicals required: glycin-2.5g, 25ml-10%NaOH, 4.5ml-Benzoyl chloride, CCl4-10ml.

Procedure: 1. in a clean dry iodination flask dissolve 2.5g glycine in 25ml of 10% NaOH 2. To this add 4.5ml benzoyl chloride in two lots. 3. After each addition, the flask is Stoppard and shaken vigorously until all the chloride has reacted. 4. Transfer the solution to a beaker and rinse the conical flask with a little water. 5. Place some crushed ice in the solution and concentrated HCl slowly with stirring until the mixture is acid to litmus paper. 6. Filter at pump. The crystalline benzoyl glycine obtained is contaminated with benzoic acid. 7. Place the solid in a beaker with 10ml CCl4, cover the beaker with a watch glass and boil gently for 10minutes on electric hot water bath. A pinch of animal charcoal may be added at this point. This extracts any benzoic acid which may be present.

Yield: 4.5g

Melting point: 1870 C

Chemical reaction and its Mechanism:

illustration not visible in this excerpt

Reference: 1. Textbook of practical organic chemistry by Vogel. 2. Comprehensive organic chemistry by V. K. Ahluwalia and Renu Agrawal.

1.4 Preparation of Azlactone:

Aim: To synthesize a pure sample of Azlactone from hippuric acid.


Cyclization of benzoyl glycine (N-acyl-α-amino acid) with Ac2O yields an oxazolone derivative called Azlactone. The methylene group in this compound is reactive and condensation with benzaldehyde readily yields Azlactone.

Type of reaction: Condensation reaction (Erlenmeyer-Azlactone synthesis).

Apparatus: conical flask, beaker, glass rod.

Chemicals required: Hippuric acid 3g, 1.8ml benzaldehyde, 4.8ml acetic anhydride, anhydrous Sodium acetate 2g, ethanol 6.7ml.


1. Place a mixture of 1.8ml benzaldehyde, hippuric acid 3g and 4.8ml acetic anhydride into a conical flask. 2. Fuse 2g of sodium acetate and it to the mixture in the conical flask. 3. Heat the flask on burner with constant stirring 4. As soon as the mixture has liquefied completely, transfer the flask to a water bath and heat it for one hour. 5. Cool to room temperature and pour in a beaker containing cold water. Azlactone separates out. 6. Add alcohol and allow it to stand for 10 minutes. Filter at pump.

Re-crystallization: the product obtained is almost pure. If required re-crystallization can be carried out using benzene as solvent

Yield: 2.7g

Melting point: the yield of the compound is almost pure with a melting point of 165-1660C. Re-crystallization with benzene raises the melting point to 167-1680C.

Chemical reaction and its Mechanism:

illustration not visible in this excerpt

Reference: 1.Textbook of practical organic chemistry by Vogel. 2. Comprehensive organic chemistry by V.K Ahluwalia and Renu Aggarwal

1.5 Preparation of phthalimide:

Aim: To synthesize a pure sample of phthalimide from phthalic anhydride and urea.

Principle: It is an example of nucleophilic substitution reaction. Amino group of urea acts as Nucleophiles. Two moles of phthalic anhydride react with one mole of urea to give two moles of Phthalimide with the expulsion of CO2 and H2O.

Type of reaction: Nucleophilic substitution reaction.

Apparatus: Round bottom flask (RBF), suction pump.

Chemicals required: phthalic anhydride-3g, urea-0.6g.

Procedure: 1. intimately mix 3g of phthalic anhydride and 0.6g of urea and place it in a Round bottom flask (RBF). 2. Heat the flask on a low flame at 130-1350C. When the contents have melted effervescence commences and gradually increases in vigour. 3. after 3-5 minutes the mixture suddenly froths to about 3 time its original volume (temperature also rises to150-1600C) and becomes almost a solid. 4. Remove the flame from beneath and allow the RBF to cool to room temperature. 5. Add 5ml water to disintegrate the solid in the flask 6. Filter at pump, wash water and dry.

Re-crystallization: Secondary alcohol.

Yield: 3g

Melting point: 2330C.

Chemical reaction and its Mechanism:

illustration not visible in this excerpt

References: 1.Textbook of practical organic chemistry by Vogel.

1.6 Preparation of 2, 4-Dihydroxyacetophenone

Aim: To synthesize a pure sample of 2, 4-dihydroxyacetophenone from resorcinol.

Principle: 2, 4-dihydroxyacetophenone can be prepared from resorcinol by Nencki reaction. Nencki reaction involves the ring acylation of phenols in the presence of anhydrous ZnCl2 and acetic acid.

Type of reaction: Nencki reaction

Apparatus: beaker, sand bath.

Chemicals required: 2 g-resorcinol, 3g-Anhydrous ZnCl2, 2.9ml-glacial acetic acid, and 9 ml-1:1 dilute HCl.

Procedure: 1.Powdered anhydrous ZnCl2 (or freshly fused and powdered ZnCl2) is dissolved in glacial acetic acid by heating in beaker on sand bath. 2. 2g of powered resorcinol is added with stirring to the beaker containing acetic acid at 1400c the solution is heated until it just beings to boil & kept for 5 mines at 150 0c. 3. 9ml of 1:1 dilute HCl is added to the mixture and the solution is cooled to 5 0C. 4. The separated product is filtered, washed with 1:3 dilute HCl.

Re-crystallization: hot water containing few drops of dilutes HCl.

Yield: 2.5gms

Melting point: 142-144 0C

Chemical reaction and its Mechanism:

illustration not visible in this excerpt

Reference: 1.Comprehensive Organic Chemistry by V.K. Ahluwalia and Renu Aggarwal

1.7 Preparation of Anthracene-Maleic anhydride adduct

Aim: To synthesize a pure sample of anthracene-maleic adduct from anthracene and maleic anhydride.

Principle: Anthracene acts as a conjugated diene system. The double bond in maleic Anhydride is activated by the presence of two carbonyl groups. Therefore maleic Anhydride behaves as a dienophile. The thermal (4+2) cycloaddition reaction between diene (anthracene) and dienophile (maleic anhydride) is called Diels alder reaction. The product of Diels alder reaction is called an Adduct.

Type of reaction: Diels- Alder reaction. (Cycloaddition reaction)

Apparatus: Round bottom flask (RBF), condenser.

Chemical’s required: 1g-anthracene, 0.5gm-maleic anhydride, and dry xylene-13 ml.

Procedure: 1. Take 1g of anthracene, 0.5g-maleic anhydride, dry xylene 13 ml in a clean dry Round bottom flask (RBF). 2. Add a porcelain piece and boil under reflux for 20minutes. 3. During the early stages of heating, keep the mixture gently shaken until a clear solution is obtained, otherwise a portion of the reagents may adhere to the base of the flask and darken because of local overheating. 4. After boiling for 20 minutes, immediately filter using hot water funnel. Cool the solution, when the addition product will rapidly crystallize. 5. Filter at the pump and dry.

Note: 1.The crude is almost pure therefore re-crystallization is not required. Otherwise re-crystallization can be done with 50ml xylene. 2. Preheat the funnel if you are re-crystallizing the crude compound because the crystals tend to solidify very quickly.

Yield: 2.7 g

Melting point: 256-2580c

Chemical reaction and its Mechanism:

illustration not visible in this excerpt

Reference: 1. Comprehensive Organic Chemistry by V.K. Ahluwalia and Renu Aggarwal 2. Practical Organic Chemistry by Mann and Saunders

1.8 Microwave Assisted Synthesis of Anthracene Maleic Anhydride Adduct

Chemicals Required: Anthracene, maleic anhydride, digyme, methanol.

Equipment And Glassware: Microwave oven, 250 ml breaker.

Procedure: 1.Thoroughly grinds a mixture of 1.8g of anthracene and 0.98 g of maleic anhydride in a mortar and transfers it to a 250 ml beaker. 2. Add 5ml diglyme and shake the mixture gently. 3. Cover the beaker with a watch glass and place in a microwave oven. The irradiation is to be carried out for 90 seconds at a medium power level. 4. After the beaker is removed from the oven, allow it to cool to room temperature, a adduct will crystallize out and can be filtered. 5. Wash the product with methanol and dry. 6. The expected yield is 80%.

Reference: Collection of interesting general Chemistry experimental By Anil J. Elias.

1.9 Microwave Assisted Synthesis of Aspirin

Chemical Required: Salicylic acid, acetic anhydride, 85% phosphoric acid, ferric chloride

Equipment and Glassware: microwave oven, 100 ml beaker.

Procedure: 1. Take in a 100ml beaker 1.38g of salicylic acid, 3.06 g of acetic anhydride, and one drop of phosphoric acid and mix well. 2. Cover the beaker with a watch glass and place it in microwave oven at power level of 30% (probably level 3) for 5 minutes. 3. Take the beaker out of the microwave oven, allow it to cool to room temperature and place in an ice bath for crystallization. 4. Test the compound for salicylic acid by ferric chloride test. 5. Report the yield and melting point.

Reference: 1.Collection of interesting general chemistry experiments by Anil J Elias.

1.9.1 P-Bromoacetanilide

Aim: To study selective bromination reaction of acetanilide.

Principle: This reaction is an example for Electrophilic substitution. Acetanilide under goes bromination with bromine acetic acid to give p-Bromoacetanilide, in acetanilide NHCOCH3 group is moderately activating and o, p-directing group. Due to steric reason, acetanilide is brominated preferably at para position forming p-Bromoacetanilide.

Chemicals required: Acetanilide- 2.5 g, Glacial acetic acid 10ml

Apparatus required: Conical flask and beaker.

Procedure: Dissolve 2.5 g of finely powdered acetanilide in 10 ml glacial acetic acid taken in a conical flask. To this add bromine in acetic acid slowly with shaking till the reaction mixture turn reddish orange in colour. Allow the reaction mixture to stand at room temperature for 15-20 minutes. Then pour this mixture into about 100ml of cold water. The separated pale yellow para bromo acetanilide is filtered at the pump and washed with cold water. Allow it to dry completely and re-crystallize from methanol.

Melting point: 1630 c

Chemical reaction and its Mechanism: Preparation of P-Bromo Acetanilide

illustration not visible in this excerpt

Reference: 1.Elementary practical organic chemistry by Arthur Vogel pp-267

1.9.2 Synthesis of P-Bromoaniline

Aim: To study the hydrolysis of p-Bromo acetanilide.

Principle: The NH2 group in aniline is strongly activating and o, p-directing group. Therefore the reaction cannot be stopped at mono bromination stage to prepare p-Bromo aniline. The amino group of aniline is first protected and then brominated to give p-Bromoacetanilide which on hydrolysis gives p-Bromo aniline.

Chemicals required: P-Bromo acetanilide 2g , 70% H2SO4 15ml , 25%NaOH

Procedure: Transfer 2g of P-bromo acetanilide into Round Bottom flask and to this add 15 ml of 70% H2SO4 and boil the mixture gently under reflux for 20 minutes. Then pour the clear solution into about 50 ml of cold water. Neutralize the acidic solution with 25% NaOH until precipitation of P-bromo-aniline is complete. Cool the mixture in ice water and filter it. Wash well with water, drain thoroughly and re-crystallize from ethanol.

Melting point: 660C

Chemical reaction and its Mechanism:

illustration not visible in this excerpt

Reference: 1.Elementary practical Organic Chemistry by Arthur Vogel p: 267

1.9.3 Preparation of 2, 4, 6 Tribromoaniline

Aim: To study the bromination of aniline.

Principle: The amino group of aniline activates benzene towards Electrophilic substitution reaction. The substitutions take place in ortho and one para position to gives 2’4’6 Tribromoaniline.

Chemicals required: Aniline- 5ml , Glacial acetic acid 19ml, Bromine in acetic acid

Apparatus required: Conical flask, beaker and glass rod.

Procedure: Take 5 ml of aniline and 19 ml of glacial acetic acid in a flask. Place the flask in ice bath and add carefully bromine in acetic acid till deep red colour persists. Allow the solution to stand at room temperature for 5-10 minutes. Transfer the mixture into a breaker containing ice cold water. A while precipitate of 2, 4, 6 tribromo aniline precipitates out. Filter the product, wash it with water and re-crystallize from ethanol.

Melting point: 1200C

Chemical reaction and its Mechanism:

illustration not visible in this excerpt

Reference: 1. Compressive Organic Chemistry by V.K. Ahluwalia and Renu Aggarwal P: 108

1.9.4 Preparation of 1, 3, 5 Tribromobenzene:

Aim: To study de-amination of 2, 4, 6-Tribromo aniline.

Principle: The amino group in aromatic primary amine can be replaced by hydrogen (de-amination) by boiling the diazonium salt prepared from amine with ethyl alcohol in presence of dry benzene to give 1, 3, 5-Tribromobenzene.

Chemicals required: 2, 4, 6-Tribromo aniline 2g, Ethanol 20ml , Dry benzene 5ml, H2SO4 1ml, Sodium nitrite 1.5 g

Apparatus required: Round Bottom flask and water condenser

Procedure: Dissolve 2g of 2 ,4, 6-tribromo aniline in a hot mixture of 20ml of ethanol and 5ml of dry benzene taken in 150 ml of concentrated H2SO4 slowly to the hot solution with shaking. Attach a water condenser to the flask and heat on water bath until the clear solution boil. Now remove the condenser and add 1.5 gm of dry powdered sodium nitrate. Return the flask to the condenser but not to the water bath. Shake the flask vigorously. The heat of the reaction causes the solution to continue heating for same time. Reflux the reaction mixture for 45 minutes with occasional shaking. Allow the reaction to cool, thoroughly in ice. Filter the product at pump, wash with small quantity of methanol or ethanol and then water (2-3 times) and re-crystallize from methanol.

Melting point: 880 C

Chemical reaction and its Mechanism:

illustration not visible in this excerpt

Reference: 1. Comprehensive Organic Chemistry by V.K. Ahluwalia and Renu Agrawal P: 5

1.9.5 Preparation of Aspirin:

Aim: To study O-acetylation of salicylic acid.

Principle: Salicylic acid undergoes acetylation with acetic anhydride selectively on the Phenolic group in the presence of Concentrated H2SO4 as catalyst.

Chemicals required: Salicylic acid 2g, acetic anhydride 6ml, Concentrated H2SO4 2-3 drops

Procedure: Weight 2 gm of salicylic acid and transfer into a clean conical flask. Add 6 ml of acetic anhydride, stir with a glass rod and add 2-3 drops of concentrated H2SO4 stir the mixture and heat on the water bath for 15 minutes. Filter the product Precipitated at a suction pump. Wash with cold water and dry it. Re-crystallize from acetic acid and water.

Melting point: 1360C

Chemical reaction and its Mechanism:

illustration not visible in this excerpt

Reference: 1. Comprehensive Organic Chemistry by V.K. Ahluwalia and Renu Agrawal pp: 3

1.9.6 Preparation of Tetrahydrocarbazole

Aim: To study the Fischer Indole synthesis.

Principle: This is an example of Fischer Indole synthesis which involves an acid catalyzed rearrangement of a phenyl hydrozone of an aldehyde or Ketone with the elimination of a molecule of ammonia forming Tetrahydrocarbazole.

Chemicals required: Cyclohexanone 2.5ml , Phenyl hydrazine 2ml , Glacial acetic acid 12ml

Procedure: Transfer 2.5 ml of cyclohexanone and 12 ml of glacial acetic acid in a Round Bottom flask and add 2 ml of phenyl hydrazine to it. Fix a reflux condenser and boil the mixture gently for 30 minutes. Filter the separated Tetrahydrocarbazole and re-crystallize from alcohol.

Melting point: 1170C

Chemical reaction and its Mechanism:

illustration not visible in this excerpt

Reference: 1.Elementary practical Organic Chemistry by Arthur Vogel pp: 363

1.9.7 7-Hydroxy 4-Methyl Coumarin (Umbelliferon)

Aim: To study Pechmann condensation.

Principle: Pechmann reaction involves the interaction of phenol with β- ketonic ester in the presence of condensing agent like H2SO4 or AlCl3 or POCl3 or PPA. The mechanism involves the transfer of proton from the acid catalyst to the ketonic group of β-carbonyl ester. This results in the reduction of electron density of the carbonyl carbon atom which then attacks the ortho position of phenol like any Electrophilic reagent. In the next step Cyclization is completed by elimination of water and ethanol.

Chemicals required: Resorcinol 3.7g, Ethyl aceto acetate 4.5ml.

Apparatus required: Beaker and conical flask.

Procedure: Transfer measured amount of H2SO4 into 250 ml beaker and cool in ice till the temperature reaches 50C. Measure ethylacetoacetate into a clean conical flask and add resorcinol in small quantities while stirring. After the complete addition the mixture should be a clear solution. Then add this mixture in small quantities to H2SO4 taken in the beaker by maintaining the temperature of the mixture between 5-100C Stir the reaction mixture well and cool for 20 minutes. After the addition is completed, transfer the reaction mixture onto the crushed ice taken in beaker with stirring, whereby a pale yellow solid of 7-hydroxy-4-methyl Coumarin separate out. Filter the product at suction and re-crystallize from ethanol.

Melting point: 1850C

Chemical reaction and its Mechanism:

illustration not visible in this excerpt

Reference: 1.Comprehensive Organic Chemistry by V.K. Ahluwalia and Renu Agrawal, pp-177.

1.9.8 Organic Synthesis-1: 2–Phenyl Indole

Aim: To synthesize 2-phenyl indole

Chemical Name: 2-phenyl indole.


illustration not visible in this excerpt

Principle: Synthesize of 2-phenyl indole involves two steps.

Step1: Formation of Schiff’s base by reaction between acetophenone and phenyl hydrazine

Step2: Cyclization of phenyl hydrazine derivative in presence of polyphosphoric acid to form 2-phenyl indole.

Type of reaction: Fischer indole synthesis

Step 1- Preparation of acetophenone phenyl hydrazone

illustration not visible in this excerpt

Chemicals: 2.5 ml Acetophenone, 3ml phenyl hydrazine, 5ml rectified spirit.

Apparatus required: Round Bottom flask, water condenser.

Procedure: Warm a mixture of 2.5 ml acetophenone and 3ml of phenyl hydrazine, 4ml of glacial acetic acid on a water bath for 1 hour dissolve hot mixture in 5ml of spirit and shake. Stir to introduce crystallization. Cool mixture in ice, filter wash with 1.2ml of rectified spirit. Dry in vacuums desiccators over anhydrous CaCl3 for at least half an hour.

The yield of phenylhydrazone is 1.5gms.

M.P.: 105-106 degree C.

Step2: Preparation of 2-phenyl indole

Chemicals: 1.5 gm of phenyl hydrazone, 8ml of phosphoric acid, 3gm of phosphorous pent oxide.

Procedure: In a conical flask add 1.5gn of acetophenone phenylhydrazone to per heated, (80degree) 10 gm of polyphosphoric acid (8ml phosphoric acid, 3gm of phosphorous pent oxide is added and heated if necessary to get a clear solution of polyphosphoric acid). Stir mixture at 100 degree C for 1hour on water bath. Cool solution, add ice water and filter off grey precipitate. Wash residue with cold water and dry.

Re-crystallization: solvent-ethanol.

Yield: 1gram

M.P.: 185-186degree C.

Chemical reaction and its Mechanism:

illustration not visible in this excerpt

Reference: 1. Elementary practical organic chemistry part- I Arthur, Vogel, pp-361.

1.9.9 Organic Synthesis - 2: 7-Hydroxy-3-Methyl Flavone

Aim: To synthesize Flavone by Baker Venkatraman method.

Chemical name: 7- Hydroxy 3- methyl Flavone.


illustration not visible in this excerpt


L’histoire des Z’ambules commence en 2012 quand Amandine et Charlotte, étudiantes en design aux Arts Décoratifs de Paris, ont l’envie de travailler pour leur projet de fin d’études sur l’appropriation de l’espace public. Leur questionnement recoupe un des nôtres : comment amener les gens à refaire de la rue un lieu de vie ?

Dans les pays méditerranéens les rues et les places sont de vrais lieux d’animation et de vie, quelque soit la taille de la ville. Elles remarquent que dans les pays du nord les espaces de rencontre et de convivialité sont des espaces collectifs privés, des espaces dits semi-publics, qu’ils s’agissent de centres commerciaux, de parcs récréatifs, de saunas en Scandinavie ou de brasseries à Paris… Elles font l’hypothèse que ceci est en partie dû au climat, personne ne reste dehors s’il fait froid. Elles constatent aussi que, s’il reste encore quelques bancs en ville, les tables ont, elles, disparues.

De là va naître le concept de la cheminambule.

La cheminambule est ainsi un espace public mobile et déployable. En 2 minutes 30 le lourd triporteur fait place à une cheminée à laquelle s’adosse une ou deux tables et des bancs, abrités par un parasol. Le but est de laisser ensuite les passants s’approprier cet espace, d’en faire un lieu gratuit de convivialité, qui invite à la rencontre. Par l’intermédiaire d’un objet les designeuses veulent inciter l’individu à s’autonomiser. Les passants doivent se sentir libres de se saisir de la cheminambule et d’en avoir les usages qu’ils souhaitent. L’utilisation de la cheminambule n’est pas fléchée. Amandine et Charlotte souhaitent aussi en faire un outil partagé entre des associations pour leurs activités et évènements.

Fortes du très bon accueil de la part des usagers, de collectivités, de centres culturels et même d’entrepreneurs y voyant un complément naturel au food truck, les créatrices décident de pousser au-delà leur projet de fin d’études, de passer du prototype au produit. La demande est forte et elles ne sont pas encore en mesure de répondre aux commandes. Elles montent donc les Z’ambules pour créer et démocratiser du mobilier urbain ambulant déployeur d’espaces publics. Elles cherchent donc comment industrialiser la cheminambule, à l’origine totalement construit par elles-mêmes, avec la volonté de travailler localement avec des industriels et artisans français. Le coût doit être le plus abordable possible. Pour cela, en plus de l’auto-édition et de l’auto-conception, elles gardent une part d’auto-construction sur les z’ambules.

Les deux designeuses ont songé à l’open source, à laisser les plans des z’ambules à disposition de tous. Mais face à leur situation de survie financière, elles souhaitent d’abord pouvoir vivre de cette activité. Dans un second temps elles pourraient envisager former des gens à la construction de mobilier urbain mobile.

Un concept déclinable

D’autres concepts sont en route, toujours fondés sur le même principe et tractés par un vélo électrique. La bibliambule est la “version été” de la cheminambule, déployant 7 hamacs autour d’une bibliothèque. Elle accueille les amateurs de lecture et arrête les passants attirés par une pause.

Le Yaki est une cuisine ambulante, “food bike” plus écolo que le food truck et plus adapté aux centres-villes européens. Inspiré des cuisines ouvertes japonaises, il permet de réaliser des grillades et de manger attablé au comptoir.

Les Z’ambules vont bientôt créer une théière/tisanière mobile pour pour le centre culturel de la villa Rohannec’h à Saint-Brieuc. L’objet sera ensuite laissé à l’autogestion des habitants pour des utilisations ponctuelles durant l’année.

Un objet-manifeste pour des espaces publics plus accueillants

Dès le départ l’objectif a été de créer un objet-manifeste, défendant des valeurs de convivialité et d’échange dans des espaces publics de plus en plus aseptisés. La surenchère de normes, de procédures et de contrôles empêche la spontanéité. Or, c’est bien la spontanéité qui attire en ville, on vient pour vivre des situations, faire des rencontres, plonger dans une ambiance, plus que pour voir de belles pierres. Nos villes sont de plus en plus froides et inhospitalières. Sous l’oeil de caméras de plus en plus omniprésentes, les libertés se réduisent dans les espaces publics, les activités et usages possibles eux aussi. Règles de comportement dans les centres-villes, autorisations nécessaires pour rassemblement public, interdictions de pratiquer du roller, de marcher sur telle pelouse, lois anti-mendicité, interdiction d’accès aux SDF pendant la saison touristique, musiciens de rue priés de décamper, bancs enlevés, entravés ou plus cyniquement encagés, la liste est longue… Tout l’enjeu de ces mesures est d’aboutir des espaces publics lisses, normalisés, préservés de tout risque et dont l’animation est maîtrisée.

Le géographe Arnaud Gasnier analyse que la vie urbaine aménagée par les décideurs se veut sans conflit ni transgression, sans confrontation directe, comme si l’imprévisible, la différence, le non maîtrisable n’avaient plus leurs places dans nos sociabilités. Cette évolution n’est pas du seul fait des élus et des aménageurs. Entretenue dans une méfiance instinctive de l’Autre, une partie (grandissante?) de la population cherche à se protéger du rapport au différent de soi et est demandeuse d’un contrôle social plus fort de la part des autorités publiques. Ces gens vont réclamer plus de sécurité, d’éclairage, de vigiles, de caméras… La normalisation des espaces publics et la privatisation des espaces de convivialité auraient donc aussi pour cause la sécession sociale, c’est à dire la distance croissante au quotidien entre les différents groupes sociaux ?

Avec les z’ambules c’est tout simplement par le charme que leurs conceptrices veulent s’imposer dans les espaces publics face à des politiques publiques timorées. Succès populaires à chaque sortie, encouragés par la demande, ce nouveau type de mobilier urbain pourrait bien être un outil de la réappropriation de la ville par ses habitants.

Leur site internet :



Leave a Reply

Your email address will not be published. Required fields are marked *